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" Introduction

A fundamental principle 1in classical mechanics 1s Hamil-
ton’s principle, which states that the dynamics of the sys-
tem are captured 1n a single action functional §S. However,
for non-conservative physical laws time-symmetry 1s broken

and Hamilton’s principle 1s not valid.

Hamilton’s Principie

states that the dynamics of a physical system are determined by the varia-
tional problem: "Find a path from given intial value to a given final value,

which makes the action § stationary."
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qi the potential energy.
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" Geometric Viewpoint

We consider fluid dynamics on a differentiable manifold
M, acted on by the group of diffeomorphisms Diff(M ).
[ti Lf ]
(which describes the evolution of fluid positions), ¢,0.g,
and advected quantities ¢y € A (e.g., density, entropy),

The action S depends on paths g € Diff(M) x

where A 1s a vector space.
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The Lagrangian L contains all physical interactions of the
ti  system. Typically, L =T —V, where T is the kinetic and V

Galley [1] developed a variational principle which allows to
capture non-conservative interactions, providing equations
of motion of the system in terms of Euler-Lagrange equa-

tions.

equations on its Lie algebra.
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Non- conservatlve Actlon Prmmple
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h € Diff(M), ie. S(g)

Let G := Diff(M ), and g its Lie algebra.
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Derivation of the Euler-Pomcare equatlons

We define [ as in (2), and relate k to K analogously.
For field theory we use the Lagragian density ®
which satisfies [ ®wdx = w with

W(u17u27V17V27¢1 (I)Z) _l(ulavl (l)l) —l(l/tz,Vz,(l)z)
—|—k(M1,M2,V2,V2,(I)1,(I)2).

The goal is to compute variations 05 for a variation
of the deformation g.

Notation

L,v Lie deriavtive of v wrt. u

(+,-) dual pairing

Step 1: Compute variations ou, ov, 00, induced
by a variaion 0g. We express them depending on
n := 8gg ' and will obtain

ou=n+Ln ov=nN+LN 00=—Lyo

Step 2: Insert this into the variation of the action

!
Ly / ' (8.0/8u) + (B,0|5Y)  +(8o0]50)dr,
li

Step 3: Formulate the above equation as a pairing
with . We use (1) Integration by parts on 1 and
o, (i) (4| L) = —(Lyun), and (iii) (S0 dN) =
— (0| Ln).

If a symmetry group 1s acting on the configuration space, the
Euler-Lagrange equations can be reduced to Euler-Poincaré

Symmetry allows for a reduction of equations of
motion. Let § be right-invariant under deformations
= S(goh)Vh € Diff(M) for
paths g. This 1s also referred to as relabeling symmetry.
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In order to formulate Galley’s principle 1n coordinate free
form, and to obtain deeper insight in the underlying geom-
etry, we reformulate the principle in terms of deformations
on a fluid manifold.
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The action 1s varied with the conditions that variations vanish at initial time and are equal (but not fixed)
= ¢, yields the real physical variable.

at final time. After the variation, setting g
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Step 4: We choose boundary conditions such that the boundary term
vanishes. Then by the fundamental lemma of variational calculus, we
deduce the integrand 1s zero, 1.e. we obtain the Euler-Poincaré equations

%SMCO + £,0,0+ 00,0+ L,(0,m)

for the new antisymmetric Lagrangian .
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term coupling the variables g;,g»
‘non-conservative potential’
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Right-invariance of the Lagrangian L: TG X A — R al-
lows the definition of a new Lagrangian /: g x A — R

:L(gagaaga(l)O)
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Nonconservative systems arise when only a subset of dy-
namical variables within a conservative system are con-
sidered.

\’ speed

heat

Accessible and 1naccessible
degrees of freedom can be,
for example, due to choice,
obervational constraints, or
separation of scales.

It 1s well-known that Hamilton’s principle 1s not applicable in non-conservative settings. By doubling the degrees of freedom,in [1] the system 1s expressed as a boundary value problem,
leading to a similar action principle.

How does one choose the
coupling term K?

The ’non-conservative potential’ K can
for example be reconstructed from a
known force on the system, or be ob-
tained by integrating out inaccessible
degrees of freedom.

TN
L

"
el ="

-1 ‘-'J. ¥ i
-

Euler-Poincaré equations resulting from varying
[1(u,v,d)dt, are given in the Lagrangian (material)
reference frame, in terms of the diffeomorphism and
) therefore coordinate-free. The Euler-Lagrange equa-
tions, resulting from varying (1), are given in Eulerian
(spatial) coordinates.

Conclusion

We have

e formulated the action functional in terms of deformations of a fluid do-
main, to obtain a coordinate free-version

e used symmetry to define a Lagrangian on the Lie algebra
e found suitable boundary conditions for the doubled system

e obtained Euler-Poincaré equations by varying the new nonconservative
action

Outlook Our goal 1s to obtain an expression for K by integrating out small
scale fluctuations of the fluid flow. We want to use the Generalised La-
grangian Mean for a model of mean-fluctuation interactions which are com-
patible with the geometry and symmetry.
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